Metamath Proof Explorer


Theorem fzosubel3

Description: Membership in a translated half-open integer range when the original range is zero-based. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzosubel3 AB..^B+DDAB0..^D

Proof

Step Hyp Ref Expression
1 simpl AB..^B+DDAB..^B+D
2 elfzoel1 AB..^B+DB
3 2 adantr AB..^B+DDB
4 3 zcnd AB..^B+DDB
5 4 addridd AB..^B+DDB+0=B
6 5 oveq1d AB..^B+DDB+0..^B+D=B..^B+D
7 1 6 eleqtrrd AB..^B+DDAB+0..^B+D
8 0zd AB..^B+DD0
9 simpr AB..^B+DDD
10 fzosubel2 AB+0..^B+DB0DAB0..^D
11 7 3 8 9 10 syl13anc AB..^B+DDAB0..^D