Metamath Proof Explorer


Theorem fzosubel2

Description: Membership in a translated half-open integer range implies translated membership in the original range. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzosubel2 AB+C..^B+DBCDABC..^D

Proof

Step Hyp Ref Expression
1 fzosubel AB+C..^B+DBABB+C-B..^B+D-B
2 1 3ad2antr1 AB+C..^B+DBCDABB+C-B..^B+D-B
3 zcn BB
4 zcn CC
5 zcn DD
6 pncan2 BCB+C-B=C
7 6 3adant3 BCDB+C-B=C
8 pncan2 BDB+D-B=D
9 8 3adant2 BCDB+D-B=D
10 7 9 oveq12d BCDB+C-B..^B+D-B=C..^D
11 3 4 5 10 syl3an BCDB+C-B..^B+D-B=C..^D
12 11 adantl AB+C..^B+DBCDB+C-B..^B+D-B=C..^D
13 2 12 eleqtrd AB+C..^B+DBCDABC..^D