Metamath Proof Explorer


Theorem fzrev3

Description: The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005)

Ref Expression
Assertion fzrev3 KKMNM+N-KMN

Proof

Step Hyp Ref Expression
1 simpl KKMNK
2 elfzel1 KMNM
3 2 adantl KKMNM
4 elfzel2 KMNN
5 4 adantl KKMNN
6 1 3 5 3jca KKMNKMN
7 simpl KM+N-KMNK
8 elfzel1 M+N-KMNM
9 8 adantl KM+N-KMNM
10 elfzel2 M+N-KMNN
11 10 adantl KM+N-KMNN
12 7 9 11 3jca KM+N-KMNKMN
13 zcn MM
14 zcn NN
15 pncan MNM+N-N=M
16 pncan2 MNM+N-M=N
17 15 16 oveq12d MNM+N-NM+N-M=MN
18 13 14 17 syl2an MNM+N-NM+N-M=MN
19 18 eleq2d MNKM+N-NM+N-MKMN
20 19 3adant1 KMNKM+N-NM+N-MKMN
21 3simpc KMNMN
22 zaddcl MNM+N
23 22 3adant1 KMNM+N
24 simp1 KMNK
25 fzrev MNM+NKKM+N-NM+N-MM+N-KMN
26 21 23 24 25 syl12anc KMNKM+N-NM+N-MM+N-KMN
27 20 26 bitr3d KMNKMNM+N-KMN
28 6 12 27 pm5.21nd KKMNM+N-KMN