Metamath Proof Explorer


Theorem fzrev3

Description: The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005)

Ref Expression
Assertion fzrev3 K K M N M + N - K M N

Proof

Step Hyp Ref Expression
1 simpl K K M N K
2 elfzel1 K M N M
3 2 adantl K K M N M
4 elfzel2 K M N N
5 4 adantl K K M N N
6 1 3 5 3jca K K M N K M N
7 simpl K M + N - K M N K
8 elfzel1 M + N - K M N M
9 8 adantl K M + N - K M N M
10 elfzel2 M + N - K M N N
11 10 adantl K M + N - K M N N
12 7 9 11 3jca K M + N - K M N K M N
13 zcn M M
14 zcn N N
15 pncan M N M + N - N = M
16 pncan2 M N M + N - M = N
17 15 16 oveq12d M N M + N - N M + N - M = M N
18 13 14 17 syl2an M N M + N - N M + N - M = M N
19 18 eleq2d M N K M + N - N M + N - M K M N
20 19 3adant1 K M N K M + N - N M + N - M K M N
21 3simpc K M N M N
22 zaddcl M N M + N
23 22 3adant1 K M N M + N
24 simp1 K M N K
25 fzrev M N M + N K K M + N - N M + N - M M + N - K M N
26 21 23 24 25 syl12anc K M N K M + N - N M + N - M M + N - K M N
27 20 26 bitr3d K M N K M N M + N - K M N
28 6 12 27 pm5.21nd K K M N M + N - K M N