Metamath Proof Explorer


Theorem fztp

Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011) (Revised by Mario Carneiro, 7-Mar-2014)

Ref Expression
Assertion fztp MMM+2=MM+1M+2

Proof

Step Hyp Ref Expression
1 uzid MMM
2 peano2uz MMM+1M
3 fzsuc M+1MMM+1+1=MM+1M+1+1
4 1 2 3 3syl MMM+1+1=MM+1M+1+1
5 zcn MM
6 ax-1cn 1
7 addass M11M+1+1=M+1+1
8 6 6 7 mp3an23 MM+1+1=M+1+1
9 5 8 syl MM+1+1=M+1+1
10 df-2 2=1+1
11 10 oveq2i M+2=M+1+1
12 9 11 eqtr4di MM+1+1=M+2
13 12 oveq2d MMM+1+1=MM+2
14 fzpr MMM+1=MM+1
15 12 sneqd MM+1+1=M+2
16 14 15 uneq12d MMM+1M+1+1=MM+1M+2
17 df-tp MM+1M+2=MM+1M+2
18 16 17 eqtr4di MMM+1M+1+1=MM+1M+2
19 4 13 18 3eqtr3d MMM+2=MM+1M+2