Metamath Proof Explorer


Theorem fzval2

Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion fzval2 MNMN=MN

Proof

Step Hyp Ref Expression
1 fzval MNMN=k|MkkN
2 zssre
3 ressxr *
4 2 3 sstri *
5 4 sseli MM*
6 4 sseli NN*
7 iccval M*N*MN=k*|MkkN
8 5 6 7 syl2an MNMN=k*|MkkN
9 8 ineq1d MNMN=k*|MkkN
10 inrab2 k*|MkkN=k*|MkkN
11 sseqin2 **=
12 4 11 mpbi *=
13 12 rabeqi k*|MkkN=k|MkkN
14 10 13 eqtri k*|MkkN=k|MkkN
15 9 14 eqtr2di MNk|MkkN=MN
16 1 15 eqtrd MNMN=MN