Metamath Proof Explorer


Theorem gausslemma2dlem0f

Description: Auxiliary lemma 6 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φP2
gausslemma2dlem0.m M=P4
gausslemma2dlem0.h H=P12
Assertion gausslemma2dlem0f φM+1H

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φP2
2 gausslemma2dlem0.m M=P4
3 gausslemma2dlem0.h H=P12
4 eldifsn P2PP2
5 prm23ge5 PP=2P=3P5
6 eqneqall P=2P2P=3P5
7 orc P=3P=3P5
8 7 a1d P=3P2P=3P5
9 olc P5P=3P5
10 9 a1d P5P2P=3P5
11 6 8 10 3jaoi P=2P=3P5P2P=3P5
12 5 11 syl PP2P=3P5
13 12 imp PP2P=3P5
14 4 13 sylbi P2P=3P5
15 fldiv4p1lem1div2 P=3P5P4+1P12
16 1 14 15 3syl φP4+1P12
17 2 oveq1i M+1=P4+1
18 16 17 3 3brtr4g φM+1H