Metamath Proof Explorer


Theorem gbepos

Description: Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion gbepos ZGoldbachEvenZ

Proof

Step Hyp Ref Expression
1 isgbe ZGoldbachEvenZEvenpqpOddqOddZ=p+q
2 prmnn pp
3 prmnn qq
4 nnaddcl pqp+q
5 2 3 4 syl2an pqp+q
6 eleq1 Z=p+qZp+q
7 5 6 imbitrrid Z=p+qpqZ
8 7 3ad2ant3 pOddqOddZ=p+qpqZ
9 8 com12 pqpOddqOddZ=p+qZ
10 9 a1i ZEvenpqpOddqOddZ=p+qZ
11 10 rexlimdvv ZEvenpqpOddqOddZ=p+qZ
12 11 imp ZEvenpqpOddqOddZ=p+qZ
13 1 12 sylbi ZGoldbachEvenZ