Metamath Proof Explorer


Theorem gboge9

Description: Any odd Goldbach number is greater than or equal to 9. Because of 9gbo , this bound is strict. (Contributed by AV, 26-Jul-2020)

Ref Expression
Assertion gboge9 Z GoldbachOdd 9 Z

Proof

Step Hyp Ref Expression
1 isgbo Z GoldbachOdd Z Odd p q r p Odd q Odd r Odd Z = p + q + r
2 df-3an p q r p q r
3 an6 p q r p Odd q Odd r Odd p p Odd q q Odd r r Odd
4 oddprmuzge3 p p Odd p 3
5 oddprmuzge3 q q Odd q 3
6 oddprmuzge3 r r Odd r 3
7 6p3e9 6 + 3 = 9
8 eluzelz p 3 p
9 eluzelz q 3 q
10 zaddcl p q p + q
11 8 9 10 syl2an p 3 q 3 p + q
12 11 zred p 3 q 3 p + q
13 eluzelre r 3 r
14 12 13 anim12i p 3 q 3 r 3 p + q r
15 14 3impa p 3 q 3 r 3 p + q r
16 6re 6
17 3re 3
18 16 17 pm3.2i 6 3
19 15 18 jctil p 3 q 3 r 3 6 3 p + q r
20 3p3e6 3 + 3 = 6
21 eluzelre p 3 p
22 eluzelre q 3 q
23 21 22 anim12i p 3 q 3 p q
24 17 17 pm3.2i 3 3
25 23 24 jctil p 3 q 3 3 3 p q
26 eluzle p 3 3 p
27 eluzle q 3 3 q
28 26 27 anim12i p 3 q 3 3 p 3 q
29 le2add 3 3 p q 3 p 3 q 3 + 3 p + q
30 25 28 29 sylc p 3 q 3 3 + 3 p + q
31 20 30 eqbrtrrid p 3 q 3 6 p + q
32 31 3adant3 p 3 q 3 r 3 6 p + q
33 eluzle r 3 3 r
34 33 3ad2ant3 p 3 q 3 r 3 3 r
35 32 34 jca p 3 q 3 r 3 6 p + q 3 r
36 le2add 6 3 p + q r 6 p + q 3 r 6 + 3 p + q + r
37 19 35 36 sylc p 3 q 3 r 3 6 + 3 p + q + r
38 7 37 eqbrtrrid p 3 q 3 r 3 9 p + q + r
39 4 5 6 38 syl3an p p Odd q q Odd r r Odd 9 p + q + r
40 3 39 sylbi p q r p Odd q Odd r Odd 9 p + q + r
41 2 40 sylanbr p q r p Odd q Odd r Odd 9 p + q + r
42 breq2 Z = p + q + r 9 Z 9 p + q + r
43 41 42 syl5ibrcom p q r p Odd q Odd r Odd Z = p + q + r 9 Z
44 43 expimpd p q r p Odd q Odd r Odd Z = p + q + r 9 Z
45 44 rexlimdva p q r p Odd q Odd r Odd Z = p + q + r 9 Z
46 45 a1i Z Odd p q r p Odd q Odd r Odd Z = p + q + r 9 Z
47 46 rexlimdvv Z Odd p q r p Odd q Odd r Odd Z = p + q + r 9 Z
48 47 imp Z Odd p q r p Odd q Odd r Odd Z = p + q + r 9 Z
49 1 48 sylbi Z GoldbachOdd 9 Z