Metamath Proof Explorer


Theorem gcd32

Description: Swap the second and third arguments of a gcd. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion gcd32 A B C A gcd B gcd C = A gcd C gcd B

Proof

Step Hyp Ref Expression
1 gcdcom B C B gcd C = C gcd B
2 1 3adant1 A B C B gcd C = C gcd B
3 2 oveq2d A B C A gcd B gcd C = A gcd C gcd B
4 gcdass A B C A gcd B gcd C = A gcd B gcd C
5 gcdass A C B A gcd C gcd B = A gcd C gcd B
6 5 3com23 A B C A gcd C gcd B = A gcd C gcd B
7 3 4 6 3eqtr4d A B C A gcd B gcd C = A gcd C gcd B