Metamath Proof Explorer


Theorem gcd32

Description: Swap the second and third arguments of a gcd. (Contributed by Scott Fenton, 8-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion gcd32 ABCAgcdBgcdC=AgcdCgcdB

Proof

Step Hyp Ref Expression
1 gcdcom BCBgcdC=CgcdB
2 1 3adant1 ABCBgcdC=CgcdB
3 2 oveq2d ABCAgcdBgcdC=AgcdCgcdB
4 gcdass ABCAgcdBgcdC=AgcdBgcdC
5 gcdass ACBAgcdCgcdB=AgcdCgcdB
6 5 3com23 ABCAgcdCgcdB=AgcdCgcdB
7 3 4 6 3eqtr4d ABCAgcdBgcdC=AgcdCgcdB