Metamath Proof Explorer


Theorem gcddvdslcm

Description: The greatest common divisor of two numbers divides their least common multiple. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion gcddvdslcm MNMgcdNMlcmN

Proof

Step Hyp Ref Expression
1 gcdcl MNMgcdN0
2 1 nn0zd MNMgcdN
3 simpl MNM
4 lcmcl MNMlcmN0
5 4 nn0zd MNMlcmN
6 gcddvds MNMgcdNMMgcdNN
7 6 simpld MNMgcdNM
8 dvdslcm MNMMlcmNNMlcmN
9 8 simpld MNMMlcmN
10 2 3 5 7 9 dvdstrd MNMgcdNMlcmN