Metamath Proof Explorer


Theorem gg-cnfldex

Description: The field of complex numbers is a set. Alternative proof of cnfldex . This version direcly uses df-cnfld , which is discouraged, however it saves all complex numbers axioms and ax-pow . (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by Thierry Arnoux, 17-Dec-2017) (Revised by GG, 16-Mar-2025)

Ref Expression
Assertion gg-cnfldex fldV

Proof

Step Hyp Ref Expression
1 df-cnfld fld=Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabs
2 tpex Basendx+ndx+ndx×V
3 snex *ndx*V
4 2 3 unex Basendx+ndx+ndx×*ndx*V
5 tpex TopSetndxMetOpenabsndxdistndxabsV
6 snex UnifSetndxmetUnifabsV
7 5 6 unex TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsV
8 4 7 unex Basendx+ndx+ndx×*ndx*TopSetndxMetOpenabsndxdistndxabsUnifSetndxmetUnifabsV
9 1 8 eqeltri fldV