Metamath Proof Explorer


Theorem gg-mulcncf

Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-mulcncf.1 φxXA:Xcn
gg-mulcncf.2 φxXB:Xcn
Assertion gg-mulcncf φxXAB:Xcn

Proof

Step Hyp Ref Expression
1 gg-mulcncf.1 φxXA:Xcn
2 gg-mulcncf.2 φxXB:Xcn
3 eqid TopOpenfld=TopOpenfld
4 3 cnfldtopon TopOpenfldTopOn
5 cncfrss xXA:XcnX
6 1 5 syl φX
7 resttopon TopOpenfldTopOnXTopOpenfld𝑡XTopOnX
8 4 6 7 sylancr φTopOpenfld𝑡XTopOnX
9 ssid
10 eqid TopOpenfld𝑡X=TopOpenfld𝑡X
11 4 toponrestid TopOpenfld=TopOpenfld𝑡
12 3 10 11 cncfcn XXcn=TopOpenfld𝑡XCnTopOpenfld
13 6 9 12 sylancl φXcn=TopOpenfld𝑡XCnTopOpenfld
14 1 13 eleqtrd φxXATopOpenfld𝑡XCnTopOpenfld
15 2 13 eleqtrd φxXBTopOpenfld𝑡XCnTopOpenfld
16 4 a1i φTopOpenfldTopOn
17 3 mpomulcn u,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
18 17 a1i φu,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
19 oveq12 u=Av=Buv=AB
20 8 14 15 16 16 18 19 cnmpt12 φxXABTopOpenfld𝑡XCnTopOpenfld
21 20 13 eleqtrrd φxXAB:Xcn