Metamath Proof Explorer


Theorem gictr

Description: Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion gictr R𝑔SS𝑔TR𝑔T

Proof

Step Hyp Ref Expression
1 brgic R𝑔SRGrpIsoS
2 brgic S𝑔TSGrpIsoT
3 n0 RGrpIsoSffRGrpIsoS
4 n0 SGrpIsoTggSGrpIsoT
5 exdistrv fgfRGrpIsoSgSGrpIsoTffRGrpIsoSggSGrpIsoT
6 gimco gSGrpIsoTfRGrpIsoSgfRGrpIsoT
7 brgici gfRGrpIsoTR𝑔T
8 6 7 syl gSGrpIsoTfRGrpIsoSR𝑔T
9 8 ancoms fRGrpIsoSgSGrpIsoTR𝑔T
10 9 exlimivv fgfRGrpIsoSgSGrpIsoTR𝑔T
11 5 10 sylbir ffRGrpIsoSggSGrpIsoTR𝑔T
12 3 4 11 syl2anb RGrpIsoSSGrpIsoTR𝑔T
13 1 2 12 syl2anb R𝑔SS𝑔TR𝑔T