Description: Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | gictr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic | |
|
2 | brgic | |
|
3 | n0 | |
|
4 | n0 | |
|
5 | exdistrv | |
|
6 | gimco | |
|
7 | brgici | |
|
8 | 6 7 | syl | |
9 | 8 | ancoms | |
10 | 9 | exlimivv | |
11 | 5 10 | sylbir | |
12 | 3 4 11 | syl2anb | |
13 | 1 2 12 | syl2anb | |