Metamath Proof Explorer


Theorem gneispacef2

Description: A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispacef2 FAF:domF𝒫𝒫domF

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 elex FAFV
3 1 gneispace FVFAFunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFp
4 2 3 syl FAFAFunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFp
5 4 ibi FAFunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFp
6 simp1 FunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFpFunF
7 6 funfnd FunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFpFFndomF
8 simp2 FunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFpranF𝒫𝒫domF
9 df-f F:domF𝒫𝒫domFFFndomFranF𝒫𝒫domF
10 7 8 9 sylanbrc FunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFpF:domF𝒫𝒫domF
11 5 10 syl FAF:domF𝒫𝒫domF