Metamath Proof Explorer


Theorem gpgedgvtx1lem

Description: Lemma for gpgedgvtx1 . (Contributed by AV, 1-Sep-2025) (Proof shortened by AV, 8-Sep-2025)

Ref Expression
Hypotheses ceilhalfelfzo1.j J = 1 ..^ N 2
gpgedgvtx1lem.i I = 0 ..^ N
Assertion gpgedgvtx1lem N 3 X J X I

Proof

Step Hyp Ref Expression
1 ceilhalfelfzo1.j J = 1 ..^ N 2
2 gpgedgvtx1lem.i I = 0 ..^ N
3 fzo0ss1 1 ..^ N 0 ..^ N
4 3 a1i N 3 1 ..^ N 0 ..^ N
5 4 2 sseqtrrdi N 3 1 ..^ N I
6 5 adantr N 3 X J 1 ..^ N I
7 eluzge3nn N 3 N
8 1 ceilhalfelfzo1 N X J X 1 ..^ N
9 7 8 syl N 3 X J X 1 ..^ N
10 9 imp N 3 X J X 1 ..^ N
11 6 10 sseldd N 3 X J X I