Metamath Proof Explorer


Theorem 2tceilhalfelfzo1

Description: Two times a positive integer less than (the ceiling of) half of another integer is less than the other integer. This theorem would hold even for integers less than 3, but then a corresponding K would not exist. (Contributed by AV, 9-Sep-2025)

Ref Expression
Assertion 2tceilhalfelfzo1 N 3 K 1 ..^ N 2 2 K < N

Proof

Step Hyp Ref Expression
1 elfzo1 K 1 ..^ N 2 K N 2 K < N 2
2 nnz K K
3 2 3ad2ant1 K N 2 N 3 K
4 nnz N 2 N 2
5 4 3ad2ant2 K N 2 N 3 N 2
6 3 5 zltlem1d K N 2 N 3 K < N 2 K N 2 1
7 nnre K K
8 7 3ad2ant1 K N 2 N 3 K
9 8 adantr K N 2 N 3 K N 2 1 K
10 nnre N 2 N 2
11 1red N 2 1
12 10 11 resubcld N 2 N 2 1
13 12 3ad2ant2 K N 2 N 3 N 2 1
14 13 adantr K N 2 N 3 K N 2 1 N 2 1
15 eluzelre N 3 N
16 15 rehalfcld N 3 N 2
17 16 3ad2ant3 K N 2 N 3 N 2
18 17 adantr K N 2 N 3 K N 2 1 N 2
19 simpr K N 2 N 3 K N 2 1 K N 2 1
20 ceilm1lt N 2 N 2 1 < N 2
21 17 20 syl K N 2 N 3 N 2 1 < N 2
22 21 adantr K N 2 N 3 K N 2 1 N 2 1 < N 2
23 9 14 18 19 22 lelttrd K N 2 N 3 K N 2 1 K < N 2
24 23 ex K N 2 N 3 K N 2 1 K < N 2
25 2re 2
26 25 a1i K N 2 N 3 2
27 2pos 0 < 2
28 27 a1i K N 2 N 3 0 < 2
29 ltmul2 K N 2 2 0 < 2 K < N 2 2 K < 2 N 2
30 8 17 26 28 29 syl112anc K N 2 N 3 K < N 2 2 K < 2 N 2
31 eluzelcn N 3 N
32 31 3ad2ant3 K N 2 N 3 N
33 2cnd K N 2 N 3 2
34 2ne0 2 0
35 34 a1i K N 2 N 3 2 0
36 32 33 35 divcan2d K N 2 N 3 2 N 2 = N
37 36 breq2d K N 2 N 3 2 K < 2 N 2 2 K < N
38 37 biimpd K N 2 N 3 2 K < 2 N 2 2 K < N
39 30 38 sylbid K N 2 N 3 K < N 2 2 K < N
40 24 39 syld K N 2 N 3 K N 2 1 2 K < N
41 6 40 sylbid K N 2 N 3 K < N 2 2 K < N
42 41 3exp K N 2 N 3 K < N 2 2 K < N
43 42 com34 K N 2 K < N 2 N 3 2 K < N
44 43 3imp K N 2 K < N 2 N 3 2 K < N
45 1 44 sylbi K 1 ..^ N 2 N 3 2 K < N
46 45 impcom N 3 K 1 ..^ N 2 2 K < N