Metamath Proof Explorer


Theorem gpgvtxel2

Description: The second component of a vertex in a generalized Petersen graph G . (Contributed by AV, 30-Aug-2025)

Ref Expression
Hypotheses gpgvtxel.i I = 0 ..^ N
gpgvtxel.j J = 1 ..^ N 2
gpgvtxel.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpgvtxel.v V = Vtx G
Assertion gpgvtxel2 N 3 K J X V 2 nd X I

Proof

Step Hyp Ref Expression
1 gpgvtxel.i I = 0 ..^ N
2 gpgvtxel.j J = 1 ..^ N 2
3 gpgvtxel.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
4 gpgvtxel.v V = Vtx G
5 1 2 3 4 gpgvtxel N 3 K J X V x 0 1 y I X = x y
6 simpr x 0 1 y I y I
7 vex x V
8 vex y V
9 7 8 op2ndd X = x y 2 nd X = y
10 9 eleq1d X = x y 2 nd X I y I
11 6 10 syl5ibrcom x 0 1 y I X = x y 2 nd X I
12 11 rexlimivv x 0 1 y I X = x y 2 nd X I
13 5 12 biimtrdi N 3 K J X V 2 nd X I
14 13 imp N 3 K J X V 2 nd X I