Metamath Proof Explorer


Theorem grothpw

Description: Derive the Axiom of Power Sets ax-pow from the Tarski-Grothendieck axiom ax-groth . That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html . Note that ax-pow is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009) (New usage is discouraged.)

Ref Expression
Assertion grothpw yzwwzwxzy

Proof

Step Hyp Ref Expression
1 simpl 𝒫zywy𝒫zw𝒫zy
2 1 ralimi zy𝒫zywy𝒫zwzy𝒫zy
3 pweq z=x𝒫z=𝒫x
4 3 sseq1d z=x𝒫zy𝒫xy
5 4 rspccv zy𝒫zyxy𝒫xy
6 2 5 syl zy𝒫zywy𝒫zwxy𝒫xy
7 6 anim2i xyzy𝒫zywy𝒫zwxyxy𝒫xy
8 7 3adant3 xyzy𝒫zywy𝒫zwz𝒫yzyzyxyxy𝒫xy
9 pm3.35 xyxy𝒫xy𝒫xy
10 vex yV
11 10 ssex 𝒫xy𝒫xV
12 8 9 11 3syl xyzy𝒫zywy𝒫zwz𝒫yzyzy𝒫xV
13 axgroth5 yxyzy𝒫zywy𝒫zwz𝒫yzyzy
14 12 13 exlimiiv 𝒫xV
15 axpweq 𝒫xVyzwwzwxzy
16 14 15 mpbi yzwwzwxzy