Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) → 𝒫 𝑧 ⊆ 𝑦 ) |
2 |
1
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) → ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ) |
3 |
|
pweq |
⊢ ( 𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥 ) |
4 |
3
|
sseq1d |
⊢ ( 𝑧 = 𝑥 → ( 𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑥 ⊆ 𝑦 ) ) |
5 |
4
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 → ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) |
6 |
2 5
|
syl |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) → ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) |
7 |
6
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ) → ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) → ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) ) |
9 |
|
pm3.35 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) → 𝒫 𝑥 ⊆ 𝑦 ) |
10 |
|
vex |
⊢ 𝑦 ∈ V |
11 |
10
|
ssex |
⊢ ( 𝒫 𝑥 ⊆ 𝑦 → 𝒫 𝑥 ∈ V ) |
12 |
8 9 11
|
3syl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) → 𝒫 𝑥 ∈ V ) |
13 |
|
axgroth5 |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |
14 |
12 13
|
exlimiiv |
⊢ 𝒫 𝑥 ∈ V |
15 |
|
axpweq |
⊢ ( 𝒫 𝑥 ∈ V ↔ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
16 |
14 15
|
mpbi |
⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) |