Metamath Proof Explorer


Theorem grothpw

Description: Derive the Axiom of Power Sets ax-pow from the Tarski-Grothendieck axiom ax-groth . That it follows is mentioned by Bob Solovay at http://www.cs.nyu.edu/pipermail/fom/2008-March/012783.html . Note that ax-pow is not used by the proof. (Contributed by Gérard Lang, 22-Jun-2009) (New usage is discouraged.)

Ref Expression
Assertion grothpw 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) → 𝒫 𝑧𝑦 )
2 1 ralimi ( ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) → ∀ 𝑧𝑦 𝒫 𝑧𝑦 )
3 pweq ( 𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥 )
4 3 sseq1d ( 𝑧 = 𝑥 → ( 𝒫 𝑧𝑦 ↔ 𝒫 𝑥𝑦 ) )
5 4 rspccv ( ∀ 𝑧𝑦 𝒫 𝑧𝑦 → ( 𝑥𝑦 → 𝒫 𝑥𝑦 ) )
6 2 5 syl ( ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) → ( 𝑥𝑦 → 𝒫 𝑥𝑦 ) )
7 6 anim2i ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ) → ( 𝑥𝑦 ∧ ( 𝑥𝑦 → 𝒫 𝑥𝑦 ) ) )
8 7 3adant3 ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ) → ( 𝑥𝑦 ∧ ( 𝑥𝑦 → 𝒫 𝑥𝑦 ) ) )
9 pm3.35 ( ( 𝑥𝑦 ∧ ( 𝑥𝑦 → 𝒫 𝑥𝑦 ) ) → 𝒫 𝑥𝑦 )
10 vex 𝑦 ∈ V
11 10 ssex ( 𝒫 𝑥𝑦 → 𝒫 𝑥 ∈ V )
12 8 9 11 3syl ( ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) ) → 𝒫 𝑥 ∈ V )
13 axgroth5 𝑦 ( 𝑥𝑦 ∧ ∀ 𝑧𝑦 ( 𝒫 𝑧𝑦 ∧ ∃ 𝑤𝑦 𝒫 𝑧𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧𝑦𝑧𝑦 ) )
14 12 13 exlimiiv 𝒫 𝑥 ∈ V
15 axpweq ( 𝒫 𝑥 ∈ V ↔ ∃ 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 ) )
16 14 15 mpbi 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 )