| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) → 𝒫 𝑧 ⊆ 𝑦 ) |
| 2 |
1
|
ralimi |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) → ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 ) |
| 3 |
|
pweq |
⊢ ( 𝑧 = 𝑥 → 𝒫 𝑧 = 𝒫 𝑥 ) |
| 4 |
3
|
sseq1d |
⊢ ( 𝑧 = 𝑥 → ( 𝒫 𝑧 ⊆ 𝑦 ↔ 𝒫 𝑥 ⊆ 𝑦 ) ) |
| 5 |
4
|
rspccv |
⊢ ( ∀ 𝑧 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑦 → ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) |
| 6 |
2 5
|
syl |
⊢ ( ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) → ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) |
| 7 |
6
|
anim2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ) → ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) → ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) ) |
| 9 |
|
pm3.35 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑥 ∈ 𝑦 → 𝒫 𝑥 ⊆ 𝑦 ) ) → 𝒫 𝑥 ⊆ 𝑦 ) |
| 10 |
|
vex |
⊢ 𝑦 ∈ V |
| 11 |
10
|
ssex |
⊢ ( 𝒫 𝑥 ⊆ 𝑦 → 𝒫 𝑥 ∈ V ) |
| 12 |
8 9 11
|
3syl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) → 𝒫 𝑥 ∈ V ) |
| 13 |
|
axgroth5 |
⊢ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ∈ 𝑦 ( 𝒫 𝑧 ⊆ 𝑦 ∧ ∃ 𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦 ) ) |
| 14 |
12 13
|
exlimiiv |
⊢ 𝒫 𝑥 ∈ V |