| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝒫  𝑧  ⊆  𝑦  ∧  ∃ 𝑤  ∈  𝑦 𝒫  𝑧  ⊆  𝑤 )  →  𝒫  𝑧  ⊆  𝑦 ) | 
						
							| 2 | 1 | ralimi | ⊢ ( ∀ 𝑧  ∈  𝑦 ( 𝒫  𝑧  ⊆  𝑦  ∧  ∃ 𝑤  ∈  𝑦 𝒫  𝑧  ⊆  𝑤 )  →  ∀ 𝑧  ∈  𝑦 𝒫  𝑧  ⊆  𝑦 ) | 
						
							| 3 |  | pweq | ⊢ ( 𝑧  =  𝑥  →  𝒫  𝑧  =  𝒫  𝑥 ) | 
						
							| 4 | 3 | sseq1d | ⊢ ( 𝑧  =  𝑥  →  ( 𝒫  𝑧  ⊆  𝑦  ↔  𝒫  𝑥  ⊆  𝑦 ) ) | 
						
							| 5 | 4 | rspccv | ⊢ ( ∀ 𝑧  ∈  𝑦 𝒫  𝑧  ⊆  𝑦  →  ( 𝑥  ∈  𝑦  →  𝒫  𝑥  ⊆  𝑦 ) ) | 
						
							| 6 | 2 5 | syl | ⊢ ( ∀ 𝑧  ∈  𝑦 ( 𝒫  𝑧  ⊆  𝑦  ∧  ∃ 𝑤  ∈  𝑦 𝒫  𝑧  ⊆  𝑤 )  →  ( 𝑥  ∈  𝑦  →  𝒫  𝑥  ⊆  𝑦 ) ) | 
						
							| 7 | 6 | anim2i | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝒫  𝑧  ⊆  𝑦  ∧  ∃ 𝑤  ∈  𝑦 𝒫  𝑧  ⊆  𝑤 ) )  →  ( 𝑥  ∈  𝑦  ∧  ( 𝑥  ∈  𝑦  →  𝒫  𝑥  ⊆  𝑦 ) ) ) | 
						
							| 8 | 7 | 3adant3 | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝒫  𝑧  ⊆  𝑦  ∧  ∃ 𝑤  ∈  𝑦 𝒫  𝑧  ⊆  𝑤 )  ∧  ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑧  ≈  𝑦  ∨  𝑧  ∈  𝑦 ) )  →  ( 𝑥  ∈  𝑦  ∧  ( 𝑥  ∈  𝑦  →  𝒫  𝑥  ⊆  𝑦 ) ) ) | 
						
							| 9 |  | pm3.35 | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ( 𝑥  ∈  𝑦  →  𝒫  𝑥  ⊆  𝑦 ) )  →  𝒫  𝑥  ⊆  𝑦 ) | 
						
							| 10 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 11 | 10 | ssex | ⊢ ( 𝒫  𝑥  ⊆  𝑦  →  𝒫  𝑥  ∈  V ) | 
						
							| 12 | 8 9 11 | 3syl | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝒫  𝑧  ⊆  𝑦  ∧  ∃ 𝑤  ∈  𝑦 𝒫  𝑧  ⊆  𝑤 )  ∧  ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑧  ≈  𝑦  ∨  𝑧  ∈  𝑦 ) )  →  𝒫  𝑥  ∈  V ) | 
						
							| 13 |  | axgroth5 | ⊢ ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧  ∈  𝑦 ( 𝒫  𝑧  ⊆  𝑦  ∧  ∃ 𝑤  ∈  𝑦 𝒫  𝑧  ⊆  𝑤 )  ∧  ∀ 𝑧  ∈  𝒫  𝑦 ( 𝑧  ≈  𝑦  ∨  𝑧  ∈  𝑦 ) ) | 
						
							| 14 | 12 13 | exlimiiv | ⊢ 𝒫  𝑥  ∈  V |