Metamath Proof Explorer


Theorem grpinvhmeo

Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses tgpcn.j J=TopOpenG
tgpinv.5 I=invgG
Assertion grpinvhmeo GTopGrpIJHomeoJ

Proof

Step Hyp Ref Expression
1 tgpcn.j J=TopOpenG
2 tgpinv.5 I=invgG
3 1 2 tgpinv GTopGrpIJCnJ
4 tgpgrp GTopGrpGGrp
5 eqid BaseG=BaseG
6 5 2 grpinvcnv GGrpI-1=I
7 4 6 syl GTopGrpI-1=I
8 7 3 eqeltrd GTopGrpI-1JCnJ
9 ishmeo IJHomeoJIJCnJI-1JCnJ
10 3 8 9 sylanbrc GTopGrpIJHomeoJ