Metamath Proof Explorer


Theorem grpo2inv

Description: Double inverse law for groups. Lemma 2.2.1(c) of Herstein p. 55. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)

Ref Expression
Hypotheses grpasscan1.1 X=ranG
grpasscan1.2 N=invG
Assertion grpo2inv GGrpOpAXNNA=A

Proof

Step Hyp Ref Expression
1 grpasscan1.1 X=ranG
2 grpasscan1.2 N=invG
3 1 2 grpoinvcl GGrpOpAXNAX
4 eqid GIdG=GIdG
5 1 4 2 grporinv GGrpOpNAXNAGNNA=GIdG
6 3 5 syldan GGrpOpAXNAGNNA=GIdG
7 1 4 2 grpolinv GGrpOpAXNAGA=GIdG
8 6 7 eqtr4d GGrpOpAXNAGNNA=NAGA
9 1 2 grpoinvcl GGrpOpNAXNNAX
10 3 9 syldan GGrpOpAXNNAX
11 simpr GGrpOpAXAX
12 10 11 3 3jca GGrpOpAXNNAXAXNAX
13 1 grpolcan GGrpOpNNAXAXNAXNAGNNA=NAGANNA=A
14 12 13 syldan GGrpOpAXNAGNNA=NAGANNA=A
15 8 14 mpbid GGrpOpAXNNA=A