Metamath Proof Explorer


Theorem grpoinvval

Description: The inverse of a group element. (Contributed by NM, 26-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses grpinvfval.1 X=ranG
grpinvfval.2 U=GIdG
grpinvfval.3 N=invG
Assertion grpoinvval GGrpOpAXNA=ιyX|yGA=U

Proof

Step Hyp Ref Expression
1 grpinvfval.1 X=ranG
2 grpinvfval.2 U=GIdG
3 grpinvfval.3 N=invG
4 1 2 3 grpoinvfval GGrpOpN=xXιyX|yGx=U
5 4 fveq1d GGrpOpNA=xXιyX|yGx=UA
6 oveq2 x=AyGx=yGA
7 6 eqeq1d x=AyGx=UyGA=U
8 7 riotabidv x=AιyX|yGx=U=ιyX|yGA=U
9 eqid xXιyX|yGx=U=xXιyX|yGx=U
10 riotaex ιyX|yGA=UV
11 8 9 10 fvmpt AXxXιyX|yGx=UA=ιyX|yGA=U
12 5 11 sylan9eq GGrpOpAXNA=ιyX|yGA=U