Metamath Proof Explorer


Theorem grpomndo

Description: A group is a monoid. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion grpomndo G GrpOp G MndOp

Proof

Step Hyp Ref Expression
1 eqid ran G = ran G
2 1 isgrpo G GrpOp G GrpOp G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z w ran G x ran G w G x = x y ran G y G x = w
3 2 biimpd G GrpOp G GrpOp G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z w ran G x ran G w G x = x y ran G y G x = w
4 1 grpoidinv G GrpOp x ran G y ran G x G y = y y G x = y w ran G w G y = x y G w = x
5 simpl x G y = y y G x = y w ran G w G y = x y G w = x x G y = y y G x = y
6 5 ralimi y ran G x G y = y y G x = y w ran G w G y = x y G w = x y ran G x G y = y y G x = y
7 6 reximi x ran G y ran G x G y = y y G x = y w ran G w G y = x y G w = x x ran G y ran G x G y = y y G x = y
8 1 ismndo2 G GrpOp G MndOp G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z x ran G y ran G x G y = y y G x = y
9 8 biimprcd G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z x ran G y ran G x G y = y y G x = y G GrpOp G MndOp
10 9 3exp G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z x ran G y ran G x G y = y y G x = y G GrpOp G MndOp
11 10 impcom x ran G y ran G z ran G x G y G z = x G y G z G : ran G × ran G ran G x ran G y ran G x G y = y y G x = y G GrpOp G MndOp
12 11 com3l x ran G y ran G x G y = y y G x = y G GrpOp x ran G y ran G z ran G x G y G z = x G y G z G : ran G × ran G ran G G MndOp
13 7 12 syl x ran G y ran G x G y = y y G x = y w ran G w G y = x y G w = x G GrpOp x ran G y ran G z ran G x G y G z = x G y G z G : ran G × ran G ran G G MndOp
14 4 13 mpcom G GrpOp x ran G y ran G z ran G x G y G z = x G y G z G : ran G × ran G ran G G MndOp
15 14 expdcom x ran G y ran G z ran G x G y G z = x G y G z G : ran G × ran G ran G G GrpOp G MndOp
16 15 a1i w ran G x ran G w G x = x y ran G y G x = w x ran G y ran G z ran G x G y G z = x G y G z G : ran G × ran G ran G G GrpOp G MndOp
17 16 com13 G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z w ran G x ran G w G x = x y ran G y G x = w G GrpOp G MndOp
18 17 3imp G : ran G × ran G ran G x ran G y ran G z ran G x G y G z = x G y G z w ran G x ran G w G x = x y ran G y G x = w G GrpOp G MndOp
19 3 18 syli G GrpOp G GrpOp G MndOp
20 19 pm2.43i G GrpOp G MndOp