Metamath Proof Explorer


Theorem grpomndo

Description: A group is a monoid. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion grpomndo GGrpOpGMndOp

Proof

Step Hyp Ref Expression
1 eqid ranG=ranG
2 1 isgrpo GGrpOpGGrpOpG:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzwranGxranGwGx=xyranGyGx=w
3 2 biimpd GGrpOpGGrpOpG:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzwranGxranGwGx=xyranGyGx=w
4 1 grpoidinv GGrpOpxranGyranGxGy=yyGx=ywranGwGy=xyGw=x
5 simpl xGy=yyGx=ywranGwGy=xyGw=xxGy=yyGx=y
6 5 ralimi yranGxGy=yyGx=ywranGwGy=xyGw=xyranGxGy=yyGx=y
7 6 reximi xranGyranGxGy=yyGx=ywranGwGy=xyGw=xxranGyranGxGy=yyGx=y
8 1 ismndo2 GGrpOpGMndOpG:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzxranGyranGxGy=yyGx=y
9 8 biimprcd G:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzxranGyranGxGy=yyGx=yGGrpOpGMndOp
10 9 3exp G:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzxranGyranGxGy=yyGx=yGGrpOpGMndOp
11 10 impcom xranGyranGzranGxGyGz=xGyGzG:ranG×ranGranGxranGyranGxGy=yyGx=yGGrpOpGMndOp
12 11 com3l xranGyranGxGy=yyGx=yGGrpOpxranGyranGzranGxGyGz=xGyGzG:ranG×ranGranGGMndOp
13 7 12 syl xranGyranGxGy=yyGx=ywranGwGy=xyGw=xGGrpOpxranGyranGzranGxGyGz=xGyGzG:ranG×ranGranGGMndOp
14 4 13 mpcom GGrpOpxranGyranGzranGxGyGz=xGyGzG:ranG×ranGranGGMndOp
15 14 expdcom xranGyranGzranGxGyGz=xGyGzG:ranG×ranGranGGGrpOpGMndOp
16 15 a1i wranGxranGwGx=xyranGyGx=wxranGyranGzranGxGyGz=xGyGzG:ranG×ranGranGGGrpOpGMndOp
17 16 com13 G:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzwranGxranGwGx=xyranGyGx=wGGrpOpGMndOp
18 17 3imp G:ranG×ranGranGxranGyranGzranGxGyGz=xGyGzwranGxranGwGx=xyranGyGx=wGGrpOpGMndOp
19 3 18 syli GGrpOpGGrpOpGMndOp
20 19 pm2.43i GGrpOpGMndOp