Description: A group is a monoid. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | grpomndo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | isgrpo | |
3 | 2 | biimpd | |
4 | 1 | grpoidinv | |
5 | simpl | |
|
6 | 5 | ralimi | |
7 | 6 | reximi | |
8 | 1 | ismndo2 | |
9 | 8 | biimprcd | |
10 | 9 | 3exp | |
11 | 10 | impcom | |
12 | 11 | com3l | |
13 | 7 12 | syl | |
14 | 4 13 | mpcom | |
15 | 14 | expdcom | |
16 | 15 | a1i | |
17 | 16 | com13 | |
18 | 17 | 3imp | |
19 | 3 18 | syli | |
20 | 19 | pm2.43i | |