Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grppncan
Next ⟩
grpnpcan
Metamath Proof Explorer
Ascii
Unicode
Theorem
grppncan
Description:
Cancellation law for subtraction (
pncan
analog).
(Contributed by
NM
, 16-Apr-2014)
Ref
Expression
Hypotheses
grpsubadd.b
⊢
B
=
Base
G
grpsubadd.p
⊢
+
˙
=
+
G
grpsubadd.m
⊢
-
˙
=
-
G
Assertion
grppncan
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
-
˙
Y
=
X
Proof
Step
Hyp
Ref
Expression
1
grpsubadd.b
⊢
B
=
Base
G
2
grpsubadd.p
⊢
+
˙
=
+
G
3
grpsubadd.m
⊢
-
˙
=
-
G
4
simp1
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
G
∈
Grp
5
simp2
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
∈
B
6
simp3
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
Y
∈
B
7
1
2
3
grpaddsubass
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
∧
Y
∈
B
→
X
+
˙
Y
-
˙
Y
=
X
+
˙
Y
-
˙
Y
8
4
5
6
6
7
syl13anc
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
-
˙
Y
=
X
+
˙
Y
-
˙
Y
9
eqid
⊢
0
G
=
0
G
10
1
9
3
grpsubid
⊢
G
∈
Grp
∧
Y
∈
B
→
Y
-
˙
Y
=
0
G
11
10
oveq2d
⊢
G
∈
Grp
∧
Y
∈
B
→
X
+
˙
Y
-
˙
Y
=
X
+
˙
0
G
12
11
3adant2
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
-
˙
Y
=
X
+
˙
0
G
13
1
2
9
grprid
⊢
G
∈
Grp
∧
X
∈
B
→
X
+
˙
0
G
=
X
14
13
3adant3
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
0
G
=
X
15
8
12
14
3eqtrd
⊢
G
∈
Grp
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
-
˙
Y
=
X