Metamath Proof Explorer


Theorem grstructd

Description: If any representation of a graph with vertices V and edges E has a certain property ps , then any structure with base set V and value E in the slot for edge functions (which is such a representation of a graph with vertices V and edges E ) has this property. (Contributed by AV, 12-Oct-2020) (Revised by AV, 9-Jun-2021)

Ref Expression
Hypotheses gropd.g φ g Vtx g = V iEdg g = E ψ
gropd.v φ V U
gropd.e φ E W
grstructd.s φ S X
grstructd.f φ Fun S
grstructd.d φ 2 dom S
grstructd.b φ Base S = V
grstructd.e φ ef S = E
Assertion grstructd φ [˙S / g]˙ ψ

Proof

Step Hyp Ref Expression
1 gropd.g φ g Vtx g = V iEdg g = E ψ
2 gropd.v φ V U
3 gropd.e φ E W
4 grstructd.s φ S X
5 grstructd.f φ Fun S
6 grstructd.d φ 2 dom S
7 grstructd.b φ Base S = V
8 grstructd.e φ ef S = E
9 funvtxdmge2val Fun S 2 dom S Vtx S = Base S
10 5 6 9 syl2anc φ Vtx S = Base S
11 10 7 eqtrd φ Vtx S = V
12 funiedgdmge2val Fun S 2 dom S iEdg S = ef S
13 5 6 12 syl2anc φ iEdg S = ef S
14 13 8 eqtrd φ iEdg S = E
15 11 14 jca φ Vtx S = V iEdg S = E
16 nfcv _ g S
17 nfv g Vtx S = V iEdg S = E
18 nfsbc1v g [˙S / g]˙ ψ
19 17 18 nfim g Vtx S = V iEdg S = E [˙S / g]˙ ψ
20 fveqeq2 g = S Vtx g = V Vtx S = V
21 fveqeq2 g = S iEdg g = E iEdg S = E
22 20 21 anbi12d g = S Vtx g = V iEdg g = E Vtx S = V iEdg S = E
23 sbceq1a g = S ψ [˙S / g]˙ ψ
24 22 23 imbi12d g = S Vtx g = V iEdg g = E ψ Vtx S = V iEdg S = E [˙S / g]˙ ψ
25 16 19 24 spcgf S X g Vtx g = V iEdg g = E ψ Vtx S = V iEdg S = E [˙S / g]˙ ψ
26 4 1 15 25 syl3c φ [˙S / g]˙ ψ