Metamath Proof Explorer
		
		
		
		Description:  A nonempty Grothendieck universe contains the empty set.  (Contributed by Rohan Ridenour, 11-Aug-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | gru0eld.1 |  | 
					
						|  |  | gru0eld.2 |  | 
				
					|  | Assertion | gru0eld |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gru0eld.1 |  | 
						
							| 2 |  | gru0eld.2 |  | 
						
							| 3 |  | 0ss |  | 
						
							| 4 | 3 | a1i |  | 
						
							| 5 |  | gruss |  | 
						
							| 6 | 1 2 4 5 | syl3anc |  |