Metamath Proof Explorer


Theorem gruop

Description: A Grothendieck universe contains ordered pairs of its elements. (Contributed by Mario Carneiro, 10-Jun-2013)

Ref Expression
Assertion gruop UUnivAUBUABU

Proof

Step Hyp Ref Expression
1 dfopg AUBUAB=AAB
2 1 3adant1 UUnivAUBUAB=AAB
3 simp1 UUnivAUBUUUniv
4 grusn UUnivAUAU
5 4 3adant3 UUnivAUBUAU
6 grupr UUnivAUBUABU
7 grupr UUnivAUABUAABU
8 3 5 6 7 syl3anc UUnivAUBUAABU
9 2 8 eqeltrd UUnivAUBUABU