Metamath Proof Explorer


Theorem gsumcl2

Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumcl , because it is not required that F is a function (actually, the hypothesis always holds for any proper class F ). (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b B=BaseG
gsumcl.z 0˙=0G
gsumcl.g φGCMnd
gsumcl.a φAV
gsumcl.f φF:AB
gsumcl2.w φFsupp0˙Fin
Assertion gsumcl2 φGFB

Proof

Step Hyp Ref Expression
1 gsumcl.b B=BaseG
2 gsumcl.z 0˙=0G
3 gsumcl.g φGCMnd
4 gsumcl.a φAV
5 gsumcl.f φF:AB
6 gsumcl2.w φFsupp0˙Fin
7 eqid CntzG=CntzG
8 cmnmnd GCMndGMnd
9 3 8 syl φGMnd
10 1 7 3 5 cntzcmnf φranFCntzGranF
11 1 2 7 9 4 5 10 6 gsumzcl2 φGFB