Metamath Proof Explorer


Theorem gsummptfidmsplitres

Description: Split a group sum expressed as mapping with a finite domain into two parts using restrictions. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptfidmsplit.b B=BaseG
gsummptfidmsplit.p +˙=+G
gsummptfidmsplit.g φGCMnd
gsummptfidmsplit.a φAFin
gsummptfidmsplit.y φkAYB
gsummptfidmsplit.i φCD=
gsummptfidmsplit.u φA=CD
gsummptfidmsplitres.f F=kAY
Assertion gsummptfidmsplitres φGF=GFC+˙GFD

Proof

Step Hyp Ref Expression
1 gsummptfidmsplit.b B=BaseG
2 gsummptfidmsplit.p +˙=+G
3 gsummptfidmsplit.g φGCMnd
4 gsummptfidmsplit.a φAFin
5 gsummptfidmsplit.y φkAYB
6 gsummptfidmsplit.i φCD=
7 gsummptfidmsplit.u φA=CD
8 gsummptfidmsplitres.f F=kAY
9 eqid 0G=0G
10 5 8 fmptd φF:AB
11 fvexd φ0GV
12 8 4 5 11 fsuppmptdm φfinSupp0GF
13 1 9 2 3 4 10 12 6 7 gsumsplit φGF=GFC+˙GFD