Metamath Proof Explorer


Theorem gsummptfzsplit

Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019)

Ref Expression
Hypotheses gsummptfzsplit.b B=BaseG
gsummptfzsplit.p +˙=+G
gsummptfzsplit.g φGCMnd
gsummptfzsplit.n φN0
gsummptfzsplit.y φk0N+1YB
Assertion gsummptfzsplit φGk=0N+1Y=Gk=0NY+˙GkN+1Y

Proof

Step Hyp Ref Expression
1 gsummptfzsplit.b B=BaseG
2 gsummptfzsplit.p +˙=+G
3 gsummptfzsplit.g φGCMnd
4 gsummptfzsplit.n φN0
5 gsummptfzsplit.y φk0N+1YB
6 fzfid φ0N+1Fin
7 fzp1disj 0NN+1=
8 7 a1i φ0NN+1=
9 elnn0uz N0N0
10 4 9 sylib φN0
11 fzsuc N00N+1=0NN+1
12 10 11 syl φ0N+1=0NN+1
13 1 2 3 6 5 8 12 gsummptfidmsplit φGk=0N+1Y=Gk=0NY+˙GkN+1Y