Metamath Proof Explorer


Theorem gsummptun

Description: Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsummptun.b B=BaseW
gsummptun.p +˙=+W
gsummptun.w φWCMnd
gsummptun.a φACFin
gsummptun.d φAC=
gsummptun.1 φxACDB
Assertion gsummptun φWxACD=WxAD+˙WxCD

Proof

Step Hyp Ref Expression
1 gsummptun.b B=BaseW
2 gsummptun.p +˙=+W
3 gsummptun.w φWCMnd
4 gsummptun.a φACFin
5 gsummptun.d φAC=
6 gsummptun.1 φxACDB
7 eqidd φAC=AC
8 1 2 3 4 6 5 7 gsummptfidmsplit φWxACD=WxAD+˙WxCD