Metamath Proof Explorer


Theorem gsumsplit

Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumsplit.b B=BaseG
gsumsplit.z 0˙=0G
gsumsplit.p +˙=+G
gsumsplit.g φGCMnd
gsumsplit.a φAV
gsumsplit.f φF:AB
gsumsplit.w φfinSupp0˙F
gsumsplit.i φCD=
gsumsplit.u φA=CD
Assertion gsumsplit φGF=GFC+˙GFD

Proof

Step Hyp Ref Expression
1 gsumsplit.b B=BaseG
2 gsumsplit.z 0˙=0G
3 gsumsplit.p +˙=+G
4 gsumsplit.g φGCMnd
5 gsumsplit.a φAV
6 gsumsplit.f φF:AB
7 gsumsplit.w φfinSupp0˙F
8 gsumsplit.i φCD=
9 gsumsplit.u φA=CD
10 eqid CntzG=CntzG
11 cmnmnd GCMndGMnd
12 4 11 syl φGMnd
13 1 10 4 6 cntzcmnf φranFCntzGranF
14 1 2 3 10 12 5 6 13 7 8 9 gsumzsplit φGF=GFC+˙GFD