Metamath Proof Explorer
Description: Append an element to a finite group sum. (Contributed by Mario
Carneiro, 19-Dec-2014) (Proof shortened by AV, 8-Mar-2019)
|
|
Ref |
Expression |
|
Hypotheses |
gsumunsn.b |
|
|
|
gsumunsn.p |
|
|
|
gsumunsn.g |
|
|
|
gsumunsn.a |
|
|
|
gsumunsn.f |
|
|
|
gsumunsn.m |
|
|
|
gsumunsn.d |
|
|
|
gsumunsn.y |
|
|
|
gsumunsn.s |
|
|
Assertion |
gsumunsn |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumunsn.b |
|
| 2 |
|
gsumunsn.p |
|
| 3 |
|
gsumunsn.g |
|
| 4 |
|
gsumunsn.a |
|
| 5 |
|
gsumunsn.f |
|
| 6 |
|
gsumunsn.m |
|
| 7 |
|
gsumunsn.d |
|
| 8 |
|
gsumunsn.y |
|
| 9 |
|
gsumunsn.s |
|
| 10 |
9
|
adantl |
|
| 11 |
1 2 3 4 5 6 7 8 10
|
gsumunsnd |
|