Metamath Proof Explorer


Theorem gsumunsnd

Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 2-Jan-2019) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnd.b B=BaseG
gsumunsnd.p +˙=+G
gsumunsnd.g φGCMnd
gsumunsnd.a φAFin
gsumunsnd.f φkAXB
gsumunsnd.m φMV
gsumunsnd.d φ¬MA
gsumunsnd.y φYB
gsumunsnd.s φk=MX=Y
Assertion gsumunsnd φGkAMX=GkAX+˙Y

Proof

Step Hyp Ref Expression
1 gsumunsnd.b B=BaseG
2 gsumunsnd.p +˙=+G
3 gsumunsnd.g φGCMnd
4 gsumunsnd.a φAFin
5 gsumunsnd.f φkAXB
6 gsumunsnd.m φMV
7 gsumunsnd.d φ¬MA
8 gsumunsnd.y φYB
9 gsumunsnd.s φk=MX=Y
10 nfcv _kY
11 1 2 3 4 5 6 7 8 9 10 gsumunsnfd φGkAMX=GkAX+˙Y