Metamath Proof Explorer


Theorem gsumzrsum

Description: Relate a group sum on ZZring to a finite sum on the complex numbers. See also gsumfsum . (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses gsumzrsum.1 φ A Fin
gsumzrsum.2 φ k A B
Assertion gsumzrsum φ ring k A B = k A B

Proof

Step Hyp Ref Expression
1 gsumzrsum.1 φ A Fin
2 gsumzrsum.2 φ k A B
3 cnfldbas = Base fld
4 cnfldadd + = + fld
5 df-zring ring = fld 𝑠
6 cnfldex fld V
7 6 a1i φ fld V
8 zsscn
9 8 a1i φ
10 2 fmpttd φ k A B : A
11 0zd φ 0
12 addlid k 0 + k = k
13 addrid k k + 0 = k
14 12 13 jca k 0 + k = k k + 0 = k
15 14 adantl φ k 0 + k = k k + 0 = k
16 3 4 5 7 1 9 10 11 15 gsumress φ fld k A B = ring k A B
17 2 zcnd φ k A B
18 1 17 gsumfsum φ fld k A B = k A B
19 16 18 eqtr3d φ ring k A B = k A B