Metamath Proof Explorer


Theorem gtnelicc

Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses gtnelicc.a φA*
gtnelicc.b φB
gtnelicc.c φC*
gtnelicc.bltc φB<C
Assertion gtnelicc φ¬CAB

Proof

Step Hyp Ref Expression
1 gtnelicc.a φA*
2 gtnelicc.b φB
3 gtnelicc.c φC*
4 gtnelicc.bltc φB<C
5 2 rexrd φB*
6 xrltnle B*C*B<C¬CB
7 5 3 6 syl2anc φB<C¬CB
8 4 7 mpbid φ¬CB
9 8 intnand φ¬ACCB
10 elicc4 A*B*C*CABACCB
11 1 5 3 10 syl3anc φCABACCB
12 9 11 mtbird φ¬CAB