Metamath Proof Explorer


Theorem gtnelioc

Description: A real number larger than the upper bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses gtnelioc.a φA*
gtnelioc.b φB
gtnelioc.c φC*
gtnelioc.bltc φB<C
Assertion gtnelioc φ¬CAB

Proof

Step Hyp Ref Expression
1 gtnelioc.a φA*
2 gtnelioc.b φB
3 gtnelioc.c φC*
4 gtnelioc.bltc φB<C
5 2 rexrd φB*
6 xrltnle B*C*B<C¬CB
7 5 3 6 syl2anc φB<C¬CB
8 4 7 mpbid φ¬CB
9 8 intn3an3d φ¬CA<CCB
10 elioc2 A*BCABCA<CCB
11 1 2 10 syl2anc φCABCA<CCB
12 9 11 mtbird φ¬CAB