Metamath Proof Explorer


Theorem h1dei

Description: Membership in 1-dimensional subspace. (Contributed by NM, 7-Jul-2001) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis h1deot.1 B
Assertion h1dei ABAxBihx=0Aihx=0

Proof

Step Hyp Ref Expression
1 h1deot.1 B
2 snssi BB
3 occl BBC
4 1 2 3 mp2b BC
5 4 chssii B
6 ocel BABAxBAihx=0
7 5 6 ax-mp ABAxBAihx=0
8 1 h1deoi xBxxihB=0
9 orthcom xBxihB=0Bihx=0
10 1 9 mpan2 xxihB=0Bihx=0
11 10 pm5.32i xxihB=0xBihx=0
12 8 11 bitri xBxBihx=0
13 12 imbi1i xBAihx=0xBihx=0Aihx=0
14 impexp xBihx=0Aihx=0xBihx=0Aihx=0
15 13 14 bitri xBAihx=0xBihx=0Aihx=0
16 15 ralbii2 xBAihx=0xBihx=0Aihx=0
17 16 anbi2i AxBAihx=0AxBihx=0Aihx=0
18 7 17 bitri ABAxBihx=0Aihx=0