Metamath Proof Explorer


Theorem hash1to3

Description: If the size of a set is between 1 and 3 (inclusively), the set is a singleton or an unordered pair or an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018)

Ref Expression
Assertion hash1to3 VFin1VV3abcV=aV=abV=abc

Proof

Step Hyp Ref Expression
1 hashcl VFinV0
2 nn01to3 V01VV3V=1V=2V=3
3 1 2 syl3an1 VFin1VV3V=1V=2V=3
4 hash1snb VFinV=1aV=a
5 4 biimpa VFinV=1aV=a
6 3mix1 V=aV=aV=abV=abc
7 6 2eximi bcV=abcV=aV=abV=abc
8 7 19.23bi cV=abcV=aV=abV=abc
9 8 19.23bi V=abcV=aV=abV=abc
10 9 eximi aV=aabcV=aV=abV=abc
11 5 10 syl VFinV=1abcV=aV=abV=abc
12 11 expcom V=1VFinabcV=aV=abV=abc
13 hash2pr VFinV=2abV=ab
14 3mix2 V=abV=aV=abV=abc
15 14 eximi cV=abcV=aV=abV=abc
16 15 19.23bi V=abcV=aV=abV=abc
17 16 2eximi abV=ababcV=aV=abV=abc
18 13 17 syl VFinV=2abcV=aV=abV=abc
19 18 expcom V=2VFinabcV=aV=abV=abc
20 hash3tr VFinV=3abcV=abc
21 3mix3 V=abcV=aV=abV=abc
22 21 eximi cV=abccV=aV=abV=abc
23 22 2eximi abcV=abcabcV=aV=abV=abc
24 20 23 syl VFinV=3abcV=aV=abV=abc
25 24 expcom V=3VFinabcV=aV=abV=abc
26 12 19 25 3jaoi V=1V=2V=3VFinabcV=aV=abV=abc
27 26 com12 VFinV=1V=2V=3abcV=aV=abV=abc
28 27 3ad2ant1 VFin1VV3V=1V=2V=3abcV=aV=abV=abc
29 3 28 mpd VFin1VV3abcV=aV=abV=abc