Metamath Proof Explorer


Theorem hashbc0

Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis ramval.c C=aV,i0b𝒫a|b=i
Assertion hashbc0 AVAC0=

Proof

Step Hyp Ref Expression
1 ramval.c C=aV,i0b𝒫a|b=i
2 0nn0 00
3 1 hashbcval AV00AC0=x𝒫A|x=0
4 2 3 mpan2 AVAC0=x𝒫A|x=0
5 hasheq0 xVx=0x=
6 5 elv x=0x=
7 6 anbi2i x𝒫Ax=0x𝒫Ax=
8 id x=x=
9 0elpw 𝒫A
10 8 9 eqeltrdi x=x𝒫A
11 10 pm4.71ri x=x𝒫Ax=
12 7 11 bitr4i x𝒫Ax=0x=
13 12 abbii x|x𝒫Ax=0=x|x=
14 df-rab x𝒫A|x=0=x|x𝒫Ax=0
15 df-sn =x|x=
16 13 14 15 3eqtr4i x𝒫A|x=0=
17 4 16 eqtrdi AVAC0=