Metamath Proof Explorer


Theorem hashcl

Description: Closure of the # function. (Contributed by Paul Chapman, 26-Oct-2012) (Revised by Mario Carneiro, 13-Jul-2014)

Ref Expression
Assertion hashcl AFinA0

Proof

Step Hyp Ref Expression
1 eqid recxVx+10ω=recxVx+10ω
2 1 hashgval AFinrecxVx+10ωcardA=A
3 ficardom AFincardAω
4 1 hashgf1o recxVx+10ω:ω1-1 onto0
5 f1of recxVx+10ω:ω1-1 onto0recxVx+10ω:ω0
6 4 5 ax-mp recxVx+10ω:ω0
7 6 ffvelcdmi cardAωrecxVx+10ωcardA0
8 3 7 syl AFinrecxVx+10ωcardA0
9 2 8 eqeltrrd AFinA0