Metamath Proof Explorer


Theorem hasheqf1od

Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by AV, 4-May-2021)

Ref Expression
Hypotheses hasheqf1od.a φAU
hasheqf1od.f φF:A1-1 ontoB
Assertion hasheqf1od φA=B

Proof

Step Hyp Ref Expression
1 hasheqf1od.a φAU
2 hasheqf1od.f φF:A1-1 ontoB
3 f1of F:A1-1 ontoBF:AB
4 2 3 syl φF:AB
5 4 1 fexd φFV
6 f1oeq1 f=Ff:A1-1 ontoBF:A1-1 ontoB
7 5 2 6 spcedv φff:A1-1 ontoB
8 hasheqf1oi AUff:A1-1 ontoBA=B
9 1 7 8 sylc φA=B