Metamath Proof Explorer


Theorem hashfz0

Description: Value of the numeric cardinality of a nonempty range of nonnegative integers. (Contributed by Alexander van der Vekens, 21-Jul-2018)

Ref Expression
Assertion hashfz0 B00B=B+1

Proof

Step Hyp Ref Expression
1 elnn0uz B0B0
2 hashfz B00B=B-0+1
3 1 2 sylbi B00B=B-0+1
4 nn0cn B0B
5 4 subid1d B0B0=B
6 5 oveq1d B0B-0+1=B+1
7 3 6 eqtrd B00B=B+1