Metamath Proof Explorer


Theorem hashgval2

Description: A short expression for the G function of hashgf1o . (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Assertion hashgval2 .ω=recxVx+10ω

Proof

Step Hyp Ref Expression
1 hashresfn .ωFnω
2 frfnom recxVx+10ωFnω
3 eqfnfv .ωFnωrecxVx+10ωFnω.ω=recxVx+10ωyω.ωy=recxVx+10ωy
4 1 2 3 mp2an .ω=recxVx+10ωyω.ωy=recxVx+10ωy
5 fvres yω.ωy=y
6 nnfi yωyFin
7 eqid recxVx+10ω=recxVx+10ω
8 7 hashgval yFinrecxVx+10ωcardy=y
9 6 8 syl yωrecxVx+10ωcardy=y
10 cardnn yωcardy=y
11 10 fveq2d yωrecxVx+10ωcardy=recxVx+10ωy
12 5 9 11 3eqtr2d yω.ωy=recxVx+10ωy
13 4 12 mprgbir .ω=recxVx+10ω