Metamath Proof Explorer


Theorem hashimarni

Description: If the size of the image of a one-to-one function E under the range of a function F which is a one-to-one function into the domain of E is a nonnegative integer, the size of the function F is the same nonnegative integer. (Contributed by Alexander van der Vekens, 4-Feb-2018)

Ref Expression
Assertion hashimarni E:domE1-1ranEEVF:0..^F1-1domEP=EranFP=NF=N

Proof

Step Hyp Ref Expression
1 fveqeq2 P=EranFP=NEranF=N
2 1 adantl F:0..^F1-1domEE:domE1-1ranEEVP=EranFP=NEranF=N
3 hashimarn E:domE1-1ranEEVF:0..^F1-1domEEranF=F
4 3 impcom F:0..^F1-1domEE:domE1-1ranEEVEranF=F
5 id EranF=NEranF=N
6 4 5 sylan9req F:0..^F1-1domEE:domE1-1ranEEVEranF=NF=N
7 6 ex F:0..^F1-1domEE:domE1-1ranEEVEranF=NF=N
8 7 adantr F:0..^F1-1domEE:domE1-1ranEEVP=EranFEranF=NF=N
9 2 8 sylbid F:0..^F1-1domEE:domE1-1ranEEVP=EranFP=NF=N
10 9 exp31 F:0..^F1-1domEE:domE1-1ranEEVP=EranFP=NF=N
11 10 com23 F:0..^F1-1domEP=EranFE:domE1-1ranEEVP=NF=N
12 11 com34 F:0..^F1-1domEP=EranFP=NE:domE1-1ranEEVF=N
13 12 3imp F:0..^F1-1domEP=EranFP=NE:domE1-1ranEEVF=N
14 13 com12 E:domE1-1ranEEVF:0..^F1-1domEP=EranFP=NF=N