Metamath Proof Explorer


Theorem hdmap14lem1

Description: Prior to part 14 in Baer p. 49, line 25. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses hdmap14lem1.h H=LHypK
hdmap14lem1.u U=DVecHKW
hdmap14lem1.v V=BaseU
hdmap14lem1.t ·˙=U
hdmap14lem3.o 0˙=0U
hdmap14lem1.r R=ScalarU
hdmap14lem1.b B=BaseR
hdmap14lem1.z Z=0R
hdmap14lem1.c C=LCDualKW
hdmap14lem2.e ˙=C
hdmap14lem1.l L=LSpanC
hdmap14lem2.p P=ScalarC
hdmap14lem2.a A=BaseP
hdmap14lem2.q Q=0P
hdmap14lem1.s S=HDMapKW
hdmap14lem1.k φKHLWH
hdmap14lem3.x φXV0˙
hdmap14lem1.f φFBZ
Assertion hdmap14lem1 φLSX=LSF·˙X

Proof

Step Hyp Ref Expression
1 hdmap14lem1.h H=LHypK
2 hdmap14lem1.u U=DVecHKW
3 hdmap14lem1.v V=BaseU
4 hdmap14lem1.t ·˙=U
5 hdmap14lem3.o 0˙=0U
6 hdmap14lem1.r R=ScalarU
7 hdmap14lem1.b B=BaseR
8 hdmap14lem1.z Z=0R
9 hdmap14lem1.c C=LCDualKW
10 hdmap14lem2.e ˙=C
11 hdmap14lem1.l L=LSpanC
12 hdmap14lem2.p P=ScalarC
13 hdmap14lem2.a A=BaseP
14 hdmap14lem2.q Q=0P
15 hdmap14lem1.s S=HDMapKW
16 hdmap14lem1.k φKHLWH
17 hdmap14lem3.x φXV0˙
18 hdmap14lem1.f φFBZ
19 17 eldifad φXV
20 18 eldifad φFB
21 eldifsni FBZFZ
22 18 21 syl φFZ
23 1 2 3 4 6 7 9 10 11 12 13 15 16 19 20 8 22 hdmap14lem1a φLSX=LSF·˙X