Metamath Proof Explorer


Theorem hdmap14lem1

Description: Prior to part 14 in Baer p. 49, line 25. (Contributed by NM, 31-May-2015)

Ref Expression
Hypotheses hdmap14lem1.h H = LHyp K
hdmap14lem1.u U = DVecH K W
hdmap14lem1.v V = Base U
hdmap14lem1.t · ˙ = U
hdmap14lem3.o 0 ˙ = 0 U
hdmap14lem1.r R = Scalar U
hdmap14lem1.b B = Base R
hdmap14lem1.z Z = 0 R
hdmap14lem1.c C = LCDual K W
hdmap14lem2.e ˙ = C
hdmap14lem1.l L = LSpan C
hdmap14lem2.p P = Scalar C
hdmap14lem2.a A = Base P
hdmap14lem2.q Q = 0 P
hdmap14lem1.s S = HDMap K W
hdmap14lem1.k φ K HL W H
hdmap14lem3.x φ X V 0 ˙
hdmap14lem1.f φ F B Z
Assertion hdmap14lem1 φ L S X = L S F · ˙ X

Proof

Step Hyp Ref Expression
1 hdmap14lem1.h H = LHyp K
2 hdmap14lem1.u U = DVecH K W
3 hdmap14lem1.v V = Base U
4 hdmap14lem1.t · ˙ = U
5 hdmap14lem3.o 0 ˙ = 0 U
6 hdmap14lem1.r R = Scalar U
7 hdmap14lem1.b B = Base R
8 hdmap14lem1.z Z = 0 R
9 hdmap14lem1.c C = LCDual K W
10 hdmap14lem2.e ˙ = C
11 hdmap14lem1.l L = LSpan C
12 hdmap14lem2.p P = Scalar C
13 hdmap14lem2.a A = Base P
14 hdmap14lem2.q Q = 0 P
15 hdmap14lem1.s S = HDMap K W
16 hdmap14lem1.k φ K HL W H
17 hdmap14lem3.x φ X V 0 ˙
18 hdmap14lem1.f φ F B Z
19 17 eldifad φ X V
20 18 eldifad φ F B
21 eldifsni F B Z F Z
22 18 21 syl φ F Z
23 1 2 3 4 6 7 9 10 11 12 13 15 16 19 20 8 22 hdmap14lem1a φ L S X = L S F · ˙ X