Metamath Proof Explorer


Theorem hdmap1l6b0N

Description: Lemmma for hdmap1l6 . (Contributed by NM, 23-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hdmap1l6.h H = LHyp K
hdmap1l6.u U = DVecH K W
hdmap1l6.v V = Base U
hdmap1l6.p + ˙ = + U
hdmap1l6.s - ˙ = - U
hdmap1l6c.o 0 ˙ = 0 U
hdmap1l6.n N = LSpan U
hdmap1l6.c C = LCDual K W
hdmap1l6.d D = Base C
hdmap1l6.a ˙ = + C
hdmap1l6.r R = - C
hdmap1l6.q Q = 0 C
hdmap1l6.l L = LSpan C
hdmap1l6.m M = mapd K W
hdmap1l6.i I = HDMap1 K W
hdmap1l6.k φ K HL W H
hdmap1l6.f φ F D
hdmap1l6cl.x φ X V 0 ˙
hdmap1l6.mn φ M N X = L F
hdmap1l6b0.y φ Y V
hdmap1l6b0.z φ Z V
hdmap1l6b0.ne φ N X N Y Z = 0 ˙
Assertion hdmap1l6b0N φ ¬ X N Y Z

Proof

Step Hyp Ref Expression
1 hdmap1l6.h H = LHyp K
2 hdmap1l6.u U = DVecH K W
3 hdmap1l6.v V = Base U
4 hdmap1l6.p + ˙ = + U
5 hdmap1l6.s - ˙ = - U
6 hdmap1l6c.o 0 ˙ = 0 U
7 hdmap1l6.n N = LSpan U
8 hdmap1l6.c C = LCDual K W
9 hdmap1l6.d D = Base C
10 hdmap1l6.a ˙ = + C
11 hdmap1l6.r R = - C
12 hdmap1l6.q Q = 0 C
13 hdmap1l6.l L = LSpan C
14 hdmap1l6.m M = mapd K W
15 hdmap1l6.i I = HDMap1 K W
16 hdmap1l6.k φ K HL W H
17 hdmap1l6.f φ F D
18 hdmap1l6cl.x φ X V 0 ˙
19 hdmap1l6.mn φ M N X = L F
20 hdmap1l6b0.y φ Y V
21 hdmap1l6b0.z φ Z V
22 hdmap1l6b0.ne φ N X N Y Z = 0 ˙
23 eqid LSubSp U = LSubSp U
24 1 2 16 dvhlvec φ U LVec
25 1 2 16 dvhlmod φ U LMod
26 3 23 7 25 20 21 lspprcl φ N Y Z LSubSp U
27 3 6 7 23 24 26 18 lspdisjb φ ¬ X N Y Z N X N Y Z = 0 ˙
28 22 27 mpbird φ ¬ X N Y Z