Metamath Proof Explorer


Theorem hdmaplem4

Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015)

Ref Expression
Hypotheses hdmaplem1.v V = Base W
hdmaplem1.n N = LSpan W
hdmaplem4.o 0 ˙ = 0 W
hdmaplem4.w φ W LVec
hdmaplem4.x φ X V
hdmaplem4.y φ Y V
hdmaplem4.z φ Z V 0 ˙
hdmaplem4.e φ N Z N X
hdmaplem4.f φ N Z N Y
Assertion hdmaplem4 φ ¬ Z N X N Y

Proof

Step Hyp Ref Expression
1 hdmaplem1.v V = Base W
2 hdmaplem1.n N = LSpan W
3 hdmaplem4.o 0 ˙ = 0 W
4 hdmaplem4.w φ W LVec
5 hdmaplem4.x φ X V
6 hdmaplem4.y φ Y V
7 hdmaplem4.z φ Z V 0 ˙
8 hdmaplem4.e φ N Z N X
9 hdmaplem4.f φ N Z N Y
10 1 3 2 4 7 5 8 lspsnne1 φ ¬ Z N X
11 1 3 2 4 7 6 9 lspsnne1 φ ¬ Z N Y
12 ioran ¬ Z N X Z N Y ¬ Z N X ¬ Z N Y
13 elun Z N X N Y Z N X Z N Y
14 12 13 xchnxbir ¬ Z N X N Y ¬ Z N X ¬ Z N Y
15 10 11 14 sylanbrc φ ¬ Z N X N Y