Metamath Proof Explorer


Theorem helch

Description: The Hilbert lattice one (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 6-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion helch C

Proof

Step Hyp Ref Expression
1 ssid
2 ax-hv0cl 0
3 1 2 pm3.2i 0
4 hvaddcl xyx+y
5 4 rgen2 xyx+y
6 hvmulcl xyxy
7 6 rgen2 xyxy
8 5 7 pm3.2i xyx+yxyxy
9 issh2 S0xyx+yxyxy
10 3 8 9 mpbir2an S
11 vex xV
12 11 hlimveci fvxx
13 12 adantl f:fvxx
14 13 gen2 fxf:fvxx
15 isch2 CSfxf:fvxx
16 10 14 15 mpbir2an C